login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376443
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*(exp(x^2) - 1))^2 ).
1
1, 0, 0, 12, 0, 120, 10800, 1680, 766080, 55913760, 48686400, 12973625280, 878369184000, 2257312337280, 475877474392320, 31178226637958400, 176135891323392000, 32566007822802854400, 2111180034178805990400, 22027962609483730099200, 3749400628293386626560000, 244391453278125083388057600
OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 - x*A(x) * (exp(x^2*A(x)^2) - 1))^2.
a(n) = (2 * n!/(2n+2)!) * Sum_{k=0..floor(n/2)} (3*n-2*k+1)! * Stirling2(k,n-2*k)/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*(exp(x^2)-1))^2)/x))
(PARI) a(n) = 2*n!*sum(k=0, n\2, (3*n-2*k+1)!*stirling(k, n-2*k, 2)/k!)/(2*n+2)!;
CROSSREFS
Cf. A375664.
Sequence in context: A257949 A375664 A375680 * A376441 A077351 A370018
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved