login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376441
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x^2))^2 ).
1
1, 0, 0, 12, 0, 120, 10800, 3360, 766080, 56064960, 76507200, 12988926720, 885913459200, 3162288729600, 477701680135680, 31728803730624000, 230820218044416000, 32828647402065715200, 2173902177236319129600, 27658882036996206796800, 3801535675181689116672000, 255228267875636473786368000
OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x^2*A(x)^2))^2.
a(n) = (2 * n!/(2n+2)!) * Sum_{k=0..floor(n/2)} (3*n-2*k+1)! * |Stirling1(k,n-2*k)|/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x^2))^2)/x))
(PARI) a(n) = 2*n!*sum(k=0, n\2, (3*n-2*k+1)!*abs(stirling(k, n-2*k, 1))/k!)/(2*n+2)!;
CROSSREFS
Cf. A375680.
Sequence in context: A375664 A375680 A376443 * A077351 A370018 A119530
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved