OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x^2*A(x)^2))^2.
a(n) = (2 * n!/(2n+2)!) * Sum_{k=0..floor(n/2)} (3*n-2*k+1)! * |Stirling1(k,n-2*k)|/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x^2))^2)/x))
(PARI) a(n) = 2*n!*sum(k=0, n\2, (3*n-2*k+1)!*abs(stirling(k, n-2*k, 1))/k!)/(2*n+2)!;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved