login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376439
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^2*(exp(x) - 1))^3 ).
0
1, 0, 0, 18, 36, 60, 23850, 189126, 988008, 184207176, 3254640750, 35132272890, 4418970811596, 134653558474188, 2463781708180338, 246532610826062190, 11098269938629561680, 305828547775319369616, 27016544700449293891158
OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 - x^2*A(x)^2 * (exp(x*A(x)) - 1))^3.
a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/3)} (3*n+k+2)! * Stirling2(n-2*k,k)/(n-2*k)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^2*(exp(x)-1))^3)/x))
(PARI) a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*stirling(n-2*k, k, 2)/(n-2*k)!)/(3*n+3)!;
CROSSREFS
Cf. A375663.
Sequence in context: A154575 A344199 A375663 * A097926 A087967 A070224
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved