login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376437
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x))^3 ).
0
1, 0, 0, 18, 36, 120, 24300, 192024, 1572480, 194205600, 3380922720, 50671716480, 4879442177280, 144175221440640, 3391736273557632, 287077095515548800, 12328722259931750400, 413067654425986560000, 33216197499043235527680
OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 + x^2*A(x)^2 * log(1 - x*A(x)))^3.
a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/3)} (3*n+k+2)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x))^3)/x))
(PARI) a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(3*n+3)!;
CROSSREFS
Cf. A375679.
Sequence in context: A335784 A347889 A375679 * A115550 A061713 A198802
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved