login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376355
Numbers that end in 1 when written in base of triangular numbers (cf. A000462).
3
1, 4, 7, 11, 14, 16, 19, 22, 25, 29, 32, 35, 37, 40, 43, 46, 49, 52, 56, 59, 62, 67, 70, 73, 77, 79, 82, 85, 89, 92, 95, 98, 102, 106, 109, 112, 116, 119, 121, 124, 127, 131, 134, 137, 140, 143, 147, 150, 152, 154, 157, 160, 164, 167, 169, 172, 175, 178, 182
OFFSET
1,2
COMMENTS
Every positive integer is in exactly one of the following sequences: A376355, this sequence, or A376356.
Conjecture: {a(n+1) - a(n) : n >= 1} = {2,3,4,5,6}. (See related conjectures at A376354 and A376356.)
MATHEMATICA
a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &, Range[Floor[Sqrt[2 n]]]]]][[All, 2]]]
t3 = Map[a[#, 3] &, Range[200]]; (* A000462 *)
m = Mod[t3, 10]
Table[Flatten[Position[m, r]], {r, 0, 2}]
p0 = Flatten[Position[m, 0]] (* A376354 *)
p1 = Flatten[Position[m, 1]] (* this sequence *)
p2 = Flatten[Position[m, 2]] (* A376356 *)
(* Peter J. C. Moses, Sep 20 2024 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Clark Kimberling, Sep 22 2024
STATUS
approved