login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376057
a(n) is the denominator of the sum S(n) defined in A376056.
3
1, 2, 14, 994, 6917246, 430634636937890, 2039908095836912108987531110990, 54095925512992695768212345567905438957243461489279855615252290
OFFSET
0,2
LINKS
FORMULA
a(n+1) = (2*n+1)*a(n)^2 + a(n), with a(0) = 1.
EXAMPLE
The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
MAPLE
a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end:
seq(a(n), n=0..7); # Alois P. Heinz, Oct 18 2024
MATHEMATICA
RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* Amiram Eldar, Sep 15 2024 *)
KEYWORD
nonn,base,frac
AUTHOR
N. J. A. Sloane, Sep 14 2024.
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Oct 18 2024
STATUS
approved