Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #21 Oct 29 2024 17:10:20
%S 1,2,14,994,6917246,430634636937890,2039908095836912108987531110990,
%T 54095925512992695768212345567905438957243461489279855615252290
%N a(n) is the denominator of the sum S(n) defined in A376056.
%H Alois P. Heinz, <a href="/A376057/b376057.txt">Table of n, a(n) for n = 0..11</a>
%F a(n+1) = (2*n+1)*a(n)^2 + a(n), with a(0) = 1.
%e The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
%p a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end:
%p seq(a(n), n=0..7); # _Alois P. Heinz_, Oct 18 2024
%t RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* _Amiram Eldar_, Sep 15 2024 *)
%Y Cf. A374663, A375516, A375531, A375532, A375781, A375522, A376048-A376056.
%K nonn,base,frac
%O 0,2
%A _N. J. A. Sloane_, Sep 14 2024.
%E a(0)=1 prepended by _Alois P. Heinz_, Oct 18 2024