login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376014
a(n) = Sum_{d|n} d^d * binomial(n/d,d).
2
1, 2, 3, 8, 5, 18, 7, 32, 36, 50, 11, 180, 13, 98, 285, 384, 17, 702, 19, 1480, 966, 242, 23, 5640, 3150, 338, 2295, 9352, 29, 22440, 31, 18432, 4488, 578, 65660, 85500, 37, 722, 7761, 229560, 41, 337302, 43, 85448, 406080, 1058, 47, 1449360, 823592, 788750, 18411
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} (k*x^k)^k / (1 - x^k)^(k+1).
If p is prime, a(p) = p.
PROG
(PARI) a(n) = sumdiv(n, d, d^d*binomial(n/d, d));
(PARI) my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, (k*x^k)^k/(1-x^k)^(k+1)))
(Python)
from math import comb
from itertools import takewhile
from sympy import divisors
def A376014(n): return sum(d**d*comb(n//d, d) for d in takewhile(lambda d:d**2<=n, divisors(n))) # Chai Wah Wu, Sep 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 06 2024
STATUS
approved