login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375824
Triangular numbers whose sum of digits is 9.
1
36, 45, 153, 171, 351, 630, 1035, 1431, 2016, 3240, 3321, 4005, 8001, 10440, 13041, 13203, 16110, 21321, 23220, 25200, 101025, 105111, 114003, 222111, 320400, 321201, 1010331, 1241100, 1313010, 1400301, 2013021, 2031120, 2410110, 4020030, 10006101, 11203011, 20012301, 32004000, 32012001, 33020001
OFFSET
1,1
COMMENTS
Infinite subsequences include 2 * 10^(2*k) + 13 * 10^k + 21, 2 * 10^(2*k) + 31 * 10^k + 120, 32 * 10^(2*k) + 4 * 10^k, and 32 * 10^(2*k) + 12 * 10^k + 1.
Conjecture: the last term not of one of those subsequences is a(53) = 210010000005.
LINKS
EXAMPLE
a(4) = 153 is a term because 153 = 17 * 18/2 is a triangular number and 1 + 5 + 3 = 9.
MAPLE
F:= proc(d, s) option remember;
# d-digit numbers with sum of digits s
local R, i;
R:= {};
for i from 0 to min(s, 9) do
R:= R union map(t -> 10*t+i, procname(d-1, s-i))
od;
R
end proc:
F(1, 0):= {}:
for i from 1 to 9 do F(1, i):= {i} od:
sort(convert(`union`(seq(select(t -> issqr(1+8*t), F(d, 9)), d=1..12)), list));
MATHEMATICA
Select[Range[10000](Range[10000]+1)/2, DigitSum[#]==9 &] (* Stefano Spezia, Sep 01 2024 *)
PROG
(PARI) select(x->(sumdigits(x)==9), vector(10000, n, n*(n+1)/2)) \\ Michel Marcus, Aug 31 2024
CROSSREFS
Intersection of A000217 and A052223. Contained in A117404 and A076713.
Sequence in context: A048034 A195528 A144291 * A068143 A264961 A188630
KEYWORD
nonn,base
AUTHOR
Robert Israel, Aug 30 2024
STATUS
approved