Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 01 2024 18:41:01
%S 36,45,153,171,351,630,1035,1431,2016,3240,3321,4005,8001,10440,13041,
%T 13203,16110,21321,23220,25200,101025,105111,114003,222111,320400,
%U 321201,1010331,1241100,1313010,1400301,2013021,2031120,2410110,4020030,10006101,11203011,20012301,32004000,32012001,33020001
%N Triangular numbers whose sum of digits is 9.
%C Infinite subsequences include 2 * 10^(2*k) + 13 * 10^k + 21, 2 * 10^(2*k) + 31 * 10^k + 120, 32 * 10^(2*k) + 4 * 10^k, and 32 * 10^(2*k) + 12 * 10^k + 1.
%C Conjecture: the last term not of one of those subsequences is a(53) = 210010000005.
%H Robert Israel, <a href="/A375824/b375824.txt">Table of n, a(n) for n = 1..95</a>
%e a(4) = 153 is a term because 153 = 17 * 18/2 is a triangular number and 1 + 5 + 3 = 9.
%p F:= proc(d,s) option remember;
%p # d-digit numbers with sum of digits s
%p local R,i;
%p R:= {};
%p for i from 0 to min(s,9) do
%p R:= R union map(t -> 10*t+i, procname(d-1,s-i))
%p od;
%p R
%p end proc:
%p F(1,0):= {}:
%p for i from 1 to 9 do F(1,i):= {i} od:
%p sort(convert(`union`(seq(select(t -> issqr(1+8*t), F(d,9)),d=1..12)),list));
%t Select[Range[10000](Range[10000]+1)/2,DigitSum[#]==9 &] (* _Stefano Spezia_, Sep 01 2024 *)
%o (PARI) select(x->(sumdigits(x)==9), vector(10000, n, n*(n+1)/2)) \\ _Michel Marcus_, Aug 31 2024
%Y Intersection of A000217 and A052223. Contained in A117404 and A076713.
%K nonn,base
%O 1,1
%A _Robert Israel_, Aug 30 2024