The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264961 Numbers that are products of two triangular numbers in more than one way. 2
 36, 45, 210, 315, 360, 630, 780, 990, 1260, 1386, 1540, 1800, 2850, 2970, 3510, 3570, 3780, 4095, 4788, 4851, 6300, 7920, 8415, 8550, 8778, 9450, 11700, 11781, 14850, 15400, 15561, 16380, 17640, 17955, 18018, 18648, 19110, 20790, 21420, 21450, 21528, 25116, 25200, 26565, 26775, 26796, 27720, 28980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10602 EXAMPLE 36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105. MAPLE A264961ct := proc(n)     local ct, d ;     ct := 0 ;     for d in numtheory[divisors](n) do         if d^2 > n then             return ct;         end if;         if isA000217(d) then             if isA000217(n/d) then                 ct := ct+1 ;             end if;         end if;     end do:     return ct; end proc: for n from 1 to 30000 do     if A264961ct(n) > 1 then         printf("%d, ", n) ;     end if; end do: MATHEMATICA lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* Michael De Vlieger, Nov 29 2015 *) PROG (Python) from __future__ import division mmax = 10**3 tmax, A264961_dict = mmax*(mmax+1)//2, {} ti = 0 for i in range(1, mmax+1):     ti += i     p = ti*i*(i-1)//2     for j in range(i, mmax+1):         p += ti*j         if p <= tmax:             A264961_dict[p] = 2 if p in A264961_dict else 1         else:             break A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # Chai Wah Wu, Nov 29 2015 CROSSREFS Subsequence of A085780. A188630 and A110904 are subsequences of this. Sequence in context: A195528 A144291 A068143 * A188630 A167310 A083674 Adjacent sequences:  A264958 A264959 A264960 * A264962 A264963 A264964 KEYWORD nonn AUTHOR R. J. Mathar, Nov 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 08:16 EST 2021. Contains 349479 sequences. (Running on oeis4.)