login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264961
Numbers that are products of two triangular numbers in more than one way.
2
36, 45, 210, 315, 360, 630, 780, 990, 1260, 1386, 1540, 1800, 2850, 2970, 3510, 3570, 3780, 4095, 4788, 4851, 6300, 7920, 8415, 8550, 8778, 9450, 11700, 11781, 14850, 15400, 15561, 16380, 17640, 17955, 18018, 18648, 19110, 20790, 21420, 21450, 21528, 25116, 25200, 26565, 26775, 26796, 27720, 28980
OFFSET
1,1
COMMENTS
One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations.
EXAMPLE
36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105.
MAPLE
A264961ct := proc(n)
local ct, d ;
ct := 0 ;
for d in numtheory[divisors](n) do
if d^2 > n then
return ct;
end if;
if isA000217(d) then
if isA000217(n/d) then
ct := ct+1 ;
end if;
end if;
end do:
return ct;
end proc:
for n from 1 to 30000 do
if A264961ct(n) > 1 then
printf("%d, ", n) ;
end if;
end do:
MATHEMATICA
lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* Michael De Vlieger, Nov 29 2015 *)
PROG
(Python)
from __future__ import division
mmax = 10**3
tmax, A264961_dict = mmax*(mmax+1)//2, {}
ti = 0
for i in range(1, mmax+1):
ti += i
p = ti*i*(i-1)//2
for j in range(i, mmax+1):
p += ti*j
if p <= tmax:
A264961_dict[p] = 2 if p in A264961_dict else 1
else:
break
A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # Chai Wah Wu, Nov 29 2015
CROSSREFS
Subsequence of A085780. A188630 and A110904 are subsequences of this.
Sequence in context: A144291 A375824 A068143 * A188630 A167310 A083674
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 29 2015
STATUS
approved