login
A375792
Numbers k such that 2^k == 2 (mod k-th triangular number) and not 2^k == 2 (mod k-th oblong number).
2
3, 11, 131, 4091, 5851, 17291, 283051, 289771, 346963, 1008547, 1082971, 3424651, 3919771, 6464611, 6852691, 7298131, 7514851, 8733691, 12752251, 16740371, 17227891, 19895611, 27393211, 30281371, 33875323, 40528531, 45744931, 68174107, 81011971, 98940403
OFFSET
1,1
COMMENTS
Conjecture: all terms of the sequence are prime numbers A000040.
The conjecture is false: 45812984491 = 1777 * 25781083 is in the sequence. - Charles R Greathouse IV, Aug 29 2024
PROG
(Magma) [n: n in [1..10^5] | 2^n mod (n*(n+1) div 2) eq 2 and not 2^n mod (n*(n+1)) eq 2];
(PARI) is(n)=my(m=n*(n+1)); Mod(2, m)^n==m/2+2 \\ Charles R Greathouse IV, Aug 29 2024
CROSSREFS
Cf. A000217 (triangular numbers), A002378 (oblong numbers), A216822 (n such that 2^n == 2 (mod n*(n+1))), A375793 (n such that 2^n == 2 (mod n*(n+1) div 2)), A217465.
Sequence in context: A201611 A088075 A088076 * A276258 A284604 A072878
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(19)-a(30) from Charles R Greathouse IV, Aug 29 2024
STATUS
approved