login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375732
a(n) is the number of partitions of n having a cube number of parts whose sum of cubes is a cube.
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 5, 2, 2, 1, 2, 2, 2, 4, 5, 9, 4, 5, 2, 6, 9, 9, 13, 12, 16, 8, 10, 8, 13, 19, 20, 26, 23, 23, 22, 22, 30, 38, 45, 47, 60, 54, 77, 87, 83, 89, 88, 104, 131, 156, 170, 202, 208, 220, 241
OFFSET
0,9
FORMULA
1 <= a(n) <= A240128(n).
EXAMPLE
a(37) counts the 4 partitions [1, 1, 1, 2, 6, 8, 9, 9] with 8 = 2^3 parts and 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 8^3 + 9^3 + 9^3 = 13^3, [1, 1, 2, 4, 4, 6, 8, 11] with 8 = 2^3 parts and 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 6^3 + 8^3 + 11^3 = 13^3, [1, 1, 1, 2, 2, 2, 10, 18] with 8 = 2^3 parts and 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 10^3 + 18^3 = 19^3, [37] with 1 = 1^3 part and 37^3 = 37^3.
MAPLE
# first Maple program to calculate the sequence:
A375732:=proc(n) local a, i, j; a:=0; for i in combinat:-partition(n) do if type(root(numelems(i), 3), integer) and type(root(add(i[j]^3, j=1..nops(i)), 3), integer) then a:=a+1 fi od; return a end proc; seq(A375732(n), n=0..75);
# second Maple program to calculate the partitions:
A375732part:=proc(n) local L, i, j; L:=[]; for i in combinat:-partition(n) do if type(root(numelems(i), 3), integer) and type(root(add(i[j]^3, j=1..nops(i)), 3), integer) then L:=[op(L), i] fi od; return op(L); end proc; A375732part(37);
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, if (ispower(#p, 3) && ispower(sum(k=1, #p, p[k]^3), 3), nb++)); nb; \\ Michel Marcus, Sep 01 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Huber, Aug 28 2024
STATUS
approved