login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375491
Number of groups of order m where m is the n-th squarefree number.
2
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 2, 1, 6, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 4, 1, 1, 4, 1, 1, 2, 1, 6, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 2, 2, 1, 1, 6, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 4, 1, 1
OFFSET
1,5
REFERENCES
O. Hölder. Die Gruppen mit quadratfreier Ordnungszahl. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, pages 211-219 (1895).
LINKS
I. Ganev, Groups of a Square-Free order, Rose-Hulman Undergraduate Mathematics Journal: Vol. 11 : Iss. 1 , Article 7 (2010).
FORMULA
a(n) = A000001(A005117(n)).
a(n) = Sum_{d|m} Product_{p} (p^c(p)-1)/(p-1) where m is the n-th squarefree number and p is a prime factor of m/d and c(p) is the number of prime factors of d that are congruent to 1 modulo p (Hölder).
PROG
(Python)
from math import isqrt, prod
from itertools import combinations
from sympy import mobius, primefactors
def A375491(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
a = set(primefactors(m))
return sum(prod((p**sum(1 for q in b if q%p==1)-1)//(p-1) for p in a-set(b)) for l in range(0, len(a)+1) for b in combinations(a, l))
CROSSREFS
Sequence in context: A249615 A096860 A128185 * A175244 A206722 A245222
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Aug 17 2024
STATUS
approved