login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175244
For k>=1 let k = a(i)^2 +...+ a(i+r-1)^2, r is the least number of squares that add up to k (A002828); a(i)<=a(i+1)<=..<=a(i+r-1); i>=1.
0
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 3, 1, 3, 1, 1, 3, 1, 1, 1, 3, 2, 3, 1, 2, 3, 1, 1, 2, 3, 4, 1, 4, 1, 1, 4, 1, 1, 1, 4, 2, 4, 1, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 4, 2, 2, 4, 5, 1, 5, 1, 1, 5, 1, 1, 1, 5, 2, 5, 1, 2, 5, 1, 1, 2, 5, 1, 1, 1, 2, 5, 2, 2, 5, 3, 5
OFFSET
1,7
EXAMPLE
1=1^2 so a(1)=1, 2=1^2+1^2 so a(2)=1 and a(3)=1, 3=1^2+1^2+1^2 so a(4)=1 and a(5)=1 and a(6)=1, 4=2^2 so a(7)=2, 5=1^2+2^2 so a(8)=1 and a(9)=2, 6=1^2+1^2+2^2 so a(10)=1 and a(11)=1 and a(12)=2, 7=1^2+1^2+1^2+2^2 so a(13)=1 and a(14)=1 and a(15)=1 and a(16)=2, 8=2^2+2^2 so a(17)=2 and a(18)=2, 9=3^2 so a(19)=3, etc...
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Mar 13 2010
STATUS
approved