This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175245 Let S be the set of distinct positive integers whose binary representations are substrings in the binary representation of n. a(n) = the number of elements of S that are coprime to all other elements of S. 2
 1, 2, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 7, 1, 2, 1, 4, 1, 4, 1, 3, 1, 2, 1, 4, 1, 3, 1, 3, 1, 3, 1, 3, 2, 2, 3, 6, 1, 3, 1, 3, 1, 2, 3, 4, 1, 2, 1, 6, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 1, 2, 1, 3, 1, 4, 2, 4, 1, 3, 1, 4, 1, 1, 1, 4, 2, 2, 1, 1, 3, 5, 3, 7, 1, 2, 1, 2, 1, 3, 2, 5, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE 27 in binary is 11011. S = (1 (1 in binary), 2 (10 in binary), 3 (11 in binary), 5 (101 in binary), 6 (110 in binary), 11 (1011 in binary), 13 (1101 in binary), 27 (11011 in binary)). Note that all of the binary representations of the elements of S are substrings in 11011. 1 is coprime to all other elements of S. 2 is not coprime to 6. 3 is not coprime to 6 or 27. 5 is coprime to all other elements of S. 6 is not coprime to 2, 3 or 27. 11 is coprime to all other elements. 13 is coprime to all other elements. And 27 is not coprime to 3 or 6. So there are 4 elements that are each coprime to all other elements, thus a(27) = 4. MAPLE Contribution from R. J. Mathar, Mar 17 2010: (Start) iscopr := proc(n, L) for i in L do if i<> n and gcd(n, i) <> 1 then return 0; end if; end do: return 1; end proc: rebase := proc(L, b) local i ; add(op(i, L)*b^(i-1), i=1..nops(L)) ; end proc: A175245 := proc(n) ndgs := convert(n, base, 2) ; S := {} ; for dig1 from 1 to nops(ndgs) do for dig2 from dig1 to nops(ndgs) do if op(dig2, ndgs) <> 0 then S := S union { [op(dig1..dig2, ndgs)] } ; fi ; end do: end do: Sl := [] ; for subd in S do Sl := [op(Sl), rebase(subd, 2) ] ; end do: a := 0 ; for subd in Sl do a := a+ iscopr(subd, Sl); end do: a ; end proc: seq(A175245(n), n=1..120) ; (End) CROSSREFS Sequence in context: A117500 A297626 A206441 * A167413 A259176 A237591 Adjacent sequences:  A175242 A175243 A175244 * A175246 A175247 A175248 KEYWORD base,nonn AUTHOR Leroy Quet, Mar 13 2010 EXTENSIONS More terms from R. J. Mathar, Mar 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:08 EDT 2019. Contains 322381 sequences. (Running on oeis4.)