OFFSET
1,3
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + (A(x+x^2) - A(x-x^2))/2.
(2) A(x) = 2*C(x) - 2*A(C(x)) + A(2*C(x) - x), where C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 24*x^5 + 122*x^6 + 756*x^7 + 5532*x^8 + 46696*x^9 + 446748*x^10 + ...
where A(x) = x + (A(x+x^2) - A(x-x^2))/2.
RELATED SERIES.
A(x+x^2) = x + 2*x^2 + 4*x^3 + 13*x^4 + 54*x^5 + 280*x^6 + 1752*x^7 + 12900*x^8 + 109388*x^9 + 1050222*x^10 + ...
A(x-x^2) = x + x^4 + 6*x^5 + 36*x^6 + 240*x^7 + 1836*x^8 + 15996*x^9 + 156726*x^10 + ...
PROG
(PARI) {a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A=concat(A, 0); Ax=Ser(A);
A[#A] = polcoeff( x + (subst(Ax, x, x+x^2 ) - subst(Ax, x, x-x^2 ))/2 - Ax, #A-1) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 19 2024
STATUS
approved