login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104983
Row sums of triangular matrix T = A104980 which satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+1 of T).
2
1, 2, 6, 24, 122, 750, 5376, 43856, 400518, 4046334, 44808104, 539850984, 7032370302, 98516491214, 1477264979352, 23612920280976, 400847064718166, 7202901369491694, 136596819590256984, 2726503675380494408
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A104980(n, k).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*T[n, k+1] + Sum[T[j, 0]*T[n, j+k+1], {j, 0, n-k-1}]]]]; (* T=A104980 *)
Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jun 07 2021 *)
PROG
(PARI) {a(n) = if(n<0, 0, sum(k=0, n, (matrix(n+1, n+1, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+1, k+1]))};
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==n-1): return n
else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) )
[sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 07 2021
CROSSREFS
Cf. A104980.
Sequence in context: A352429 A352437 A144167 * A375458 A144251 A304198
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 10 2005
STATUS
approved