login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243806
G.f.: exp( Integral Sum_{n>=1} (n+1)!*x^(n-1) / Product_{k=1..n} (1-k*x) dx ).
0
1, 2, 6, 24, 123, 786, 6112, 56504, 607833, 7467066, 103120674, 1580416008, 26598861595, 487397118314, 9654657563748, 205508121922824, 4676833854264603, 113293413849825702, 2910255267932697130, 79008535866112062440, 2260164362082172615833, 67947314033110789074486
OFFSET
0,2
COMMENTS
Compare g.f. to:
exp( Integral Sum_{n>=1} (n+1)!*x^(n-1) / Product_{k=1..n} (1+k*x) dx ) = 1/(1-2*x).
FORMULA
G.f.: exp( Sum_{n>=1} A005649(n)*x^n/n ) where Sum_{n>=0} A005649(n)*x^n/n! = 1/(2-exp(x))^2.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 123*x^4 + 786*x^5 + 6112*x^6 +...
where the logarithmic derivative is given by the series:
A'(x)/A(x) = 2!/(1-x) + 3!*x/((1-x)*(1-2*x)) + 4!*x^2/((1-x)*(1-2*x)*(1-3*x)) + 5!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + 6!*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) +...
Explicitly,
A'(x)/A(x) = 2 + 8*x + 44*x^2 + 308*x^3 + 2612*x^4 + 25988*x^5 + 296564*x^6 +...+ A005649(n+1)*x^n +...
compare to:
1/(2-exp(x))^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 308*x^4/4! + 2612*x^5/5! + 25988*x^6/6! +...+ A005649(n)*x^n/n! +...
PROG
(PARI) {a(n)=local(A=1+x); A=exp(intformal(sum(m=1, n+1, (m+1)!*x^(m-1)/prod(k=1, m, 1-k*x +x*O(x^n))))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From g.f. exp( Sum_{n>=1} A005649(n)*x^n/n ): */
{A005649(n)=n!*polcoeff(1/(2-exp(x +x*O(x^n)))^2, n)}
{a(n)=polcoeff(exp(sum(m=1, n, A005649(n)*x^n/n) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A005649.
Sequence in context: A375458 A144251 A304198 * A201158 A356634 A191343
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 11 2014
STATUS
approved