login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201158
E.g.f. exp(x)/(cos(x) - sin(x)).
0
1, 2, 6, 24, 124, 792, 6056, 53984, 549904, 6301472, 80233056, 1123714944, 17169102784, 284184941952, 5065697161856, 96747688891904, 1970927736619264, 42660873261343232, 977715195437139456, 23652447354912036864, 602304626050881977344
OFFSET
0,2
COMMENTS
Sum_{n>=0} a(n)x^n/n! = exp(x)/(cos(x) - sin(x)).
FORMULA
Sum_{n>=0} a(n)x^n/n! = exp(x)/(cos(x) - sin(x)).
exp(x)/(cos(x) - sin(x)) = 1/G(0); G(k) = 1-2*x/(4*k+1+x*(4*k+1)/(2*(2*k+1)-x-2*(x^2)*(2*k+1)/((x^2)-(2*k+2)*(4*k+3)/G(k+1)))); (continued fraction).
G.f.: 1/G(0) where G(k) = 1 - 2*x*(k+1) - 2*x^2*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
a(n) ~ n! * exp(Pi/4)*2^(2*n+3/2)/Pi^(n+1). - Vaclav Kotesovec, Jun 27 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)^2/(2*x^2*(k+1)^2 - (1 - 2*x - 2*x*k)*(1 - 4*x - 2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
MAPLE
A:=series(exp(x)/(cos(x)-sin(x)), x, 40);
G(x):=A : f[0]:=G(x): for n from 1 to 41 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..40);
MATHEMATICA
nn = 30; Range[0, nn]! CoefficientList[Series[Exp[x]/(Cos[x] - Sin[x]), {x, 0, nn}], x] (* T. D. Noe, Dec 05 2011 *)
CROSSREFS
Sequence in context: A144251 A304198 A243806 * A356634 A191343 A368761
KEYWORD
nonn
AUTHOR
STATUS
approved