OFFSET
1,7
COMMENTS
Here "irreducible" means the base and diagonal lengths are coprime, and no subset of bases form smaller Pythagorean hyperrectangles.
Subset of cases counted in A037444, which includes nonreduced cases and 1 dimensional cases.
EXAMPLE
a(2)=1: {1, 1, 1, 1}
a(3)=1: {1, 2, 2}
...
a(7)=3: {1, 4, 4, 4}, {2, 2, 4, 5}, {2, 3, 6}
a(8)=5: {1, 1, 1, 5, 6}, {1, 1, 2, 3, 7}, {1, 2, 3, 5, 5}, {1, 3, 3, 3, 6}, {2, 2, 2, 3, 3, 3, 5}
...
Not counted:
{0} -> 0 (0 length base, <2 dimensions)
{1} -> 1 (<2 dimensions)
{1, 1, 1, 1, 1, 1, 1, 1, 1} -> 3 (contains subset {1, 1, 1, 1} -> 2)
{4, 3} -> 5 (indistinct from {3, 4} -> 5)
{6, 8} -> 10 (reduces to {3, 4} -> 5)
{5, 6, 6, 8, 8} -> 15 (reduces to {5, 10, 10} -> 15, then to {1, 2, 2} -> 3)
PROG
(PARI) a(n)=if(n, /* globals */ v=List([n]); c=n^2; a_n=0); if(c==0, if(#v>=3 && gcd(concat(v))==1, a_n++); return); my(b=if(#v>=2, v[#v], 1)-1); while(b++ && b^2<=c, if(hassub(b^2)==true, next); listput(v, b); c-=b^2; a(); c+=b^2; listpop(v)); a_n
hassub(b2)=my(r=false); for(t=1, 2^(#v-1)-1-if(b2==c, 1, 0), my(tb=binary(t)); if(issquare(b2+sum(i=0, #tb-1, tb[#tb-i]*v[#v-i]^2)), r=true; break)); r
for(n=1, 52, print(n, " ", a(n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles L. Hohn, Aug 12 2024
STATUS
approved