OFFSET
4,1
COMMENTS
Provable that every row n has a finite number of terms, with n < 4 producing no solutions, and T(n, k) never exceeding (n/2)^3.
This sequence excludes cases where c == 0, where all b produce integer solutions d*b.
Nonsquare d produce solutions following a different pattern, shown as A374602.
FORMULA
T(n, 1) = A080782(n+2).
EXAMPLE
4: {5, 7}
5: {7, 8}
6: {9, 13, 17, 27}
7: {8, 10, 11, 13, 16, 19}
8: {10, 11, 13, 14, 19, 21, 25, 31, 59, 61}
9: {12, 15, 22, 23, 29, 34, 39, 42}
10: {11, 13, 14, 16, 17, 19, 25, 33, 37, 41, 49, 103, 107, 125}
11: {13, 14, 16, 17, 19, 20, 23, 27, 28, 32, 37, 40, 46, 53, 82, 83}
12: {15, 18, 21, 26, 29, 31, 34, 41, 43, 51, 54, 57, 61, 71, 159, 165, 209, 211}
...
sqrt((2^2-1)*1^2 + 1*(1+1)^2) = sqrt(7) -> not an integer so not included.
sqrt((4^2-1)*1^2 + 1*(1+1)^2) = sqrt(19) -> not an integer so not included.
sqrt((4^2-3)*1^2 + 3*(1+1)^2) = 5 -> T(4,1).
sqrt((4^2-11)*1^2 + 11*(1+1)^2) = 7 -> T(4,2).
sqrt((5^2-8)*1^2 + 8*(1+1)^2) = 7 -> T(5,1).
sqrt((6^2-5)*2^2 + 5*(2+1)^2) = 13 -> T(6,2).
PROG
(PARI) row(n)=my(d=n^2, t=n, v=List()); while(t<n^3, my(b=floor(sqrt(t^2/d)), r=t^2-d*b^2); if (r && r%(b*2+1)==0, listput(v, t)); t++); concat(v)
for(n=4, 12, print(n, " ", row(n)))
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Charles L. Hohn, Aug 12 2024
STATUS
approved