login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct, irreducible ways that a Pythagorean hyperrectangle of 2 or more dimensions can produce diagonal length n.
0

%I #9 Sep 03 2024 01:38:47

%S 0,1,1,1,1,1,3,5,8,5,12,16,14,23,17,52,57,58,108,104,113,174,248,359,

%T 217,265,406,597,731,579,1137,1525,1137,1400,1898,2659,3136,3073,3203,

%U 5021,4660,5022,8410,8850,7748,10066,15455,18718,17354,12118,18483,22683

%N Number of distinct, irreducible ways that a Pythagorean hyperrectangle of 2 or more dimensions can produce diagonal length n.

%C Here "irreducible" means the base and diagonal lengths are coprime, and no subset of bases form smaller Pythagorean hyperrectangles.

%C Subset of cases counted in A037444, which includes nonreduced cases and 1 dimensional cases.

%e a(2)=1: {1, 1, 1, 1}

%e a(3)=1: {1, 2, 2}

%e ...

%e a(7)=3: {1, 4, 4, 4}, {2, 2, 4, 5}, {2, 3, 6}

%e a(8)=5: {1, 1, 1, 5, 6}, {1, 1, 2, 3, 7}, {1, 2, 3, 5, 5}, {1, 3, 3, 3, 6}, {2, 2, 2, 3, 3, 3, 5}

%e ...

%e Not counted:

%e {0} -> 0 (0 length base, <2 dimensions)

%e {1} -> 1 (<2 dimensions)

%e {1, 1, 1, 1, 1, 1, 1, 1, 1} -> 3 (contains subset {1, 1, 1, 1} -> 2)

%e {4, 3} -> 5 (indistinct from {3, 4} -> 5)

%e {6, 8} -> 10 (reduces to {3, 4} -> 5)

%e {5, 6, 6, 8, 8} -> 15 (reduces to {5, 10, 10} -> 15, then to {1, 2, 2} -> 3)

%o (PARI) a(n)=if(n, /* globals */ v=List([n]); c=n^2; a_n=0); if(c==0, if(#v>=3 && gcd(concat(v))==1, a_n++); return); my(b=if(#v>=2, v[#v], 1)-1); while(b++ && b^2<=c, if(hassub(b^2)==true, next); listput(v, b); c-=b^2; a(); c+=b^2; listpop(v)); a_n

%o hassub(b2)=my(r=false); for(t=1, 2^(#v-1)-1-if(b2==c, 1, 0), my(tb=binary(t)); if(issquare(b2+sum(i=0, #tb-1, tb[#tb-i]*v[#v-i]^2)), r=true; break)); r

%o for(n=1, 52, print(n, " ", a(n)))

%Y Cf. A037444.

%K nonn

%O 1,7

%A _Charles L. Hohn_, Aug 12 2024