login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374917
Inverse of the Fibonacci sequence beginning 1,1 with respect to binomial convolution.
0
1, -1, 0, 3, -5, -18, 113, 35, -3044, 9755, 87999, -882894, -1155935, 69780087, -292042360, -5040306157, 64613044147, 197030202470, -10570955773551, 48865639709115, 1470783141900676, -21819085085811861, -123330624543827305, 6244177033369108298, -28216305335425392575, -1453926618188019546193
OFFSET
0,4
COMMENTS
The binomial convolution of this sequence with the Fibonacci sequence beginning 1,1 gives the identity sequence with respect to convolution (A000007).
LINKS
J. A. Adell and A. Lekuona, Binomial convolution and transformations of Appell polynomials, J. Math. Anal. Appl. 456(1), pp. 16-33, 2017.
P. Appell, Sur une Classe de Polynômes, Ann. Sci. École Norm. Sup. 9(2), pp. 119-144, 1880.
FORMULA
a(0) = 1, a(n) = -Sum_{k=1..n} binomial(n, k)*a(n - k)*A000045(k+1).
E.g.f.: 1/G'(x) where G(x) is the e.g.f. of A000045.
The recursion P(0, x) = 1, P(n, x) = x^n - Sum_{k=0..n-1} binomial(n, k)*a(n-k)*P(k, x) defines the so-called Appell-Fibonacci polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, where T(n, k) is the triangular array A094436.
MAPLE
p:=(1-sqrt(5))/2: q:=(1+sqrt(5))/2:
egf := (1-2*q)/(p*exp(p*x)-q*exp(q*x)): ser := series(egf, x, 27):
seq(n!*simplify(coeff(ser, x, n)), n=0..25); # Peter Luschny, Aug 05 2024
MATHEMATICA
a[0] = 1; a[n_]:=a[n]= -Sum[Binomial[n, k] Fibonacci[k + 1] a[n - k], {k, 1, n}]
(* or, to generate the list L of the first n terms *)
phi = (1 + Sqrt[5])/2; psi = 1 - phi; L[n_] := CoefficientList[Series[(phi - psi)/(phi Exp[phi x] - psi Exp[psi x]), {x, 0, n}], x] Table[k!, {k, 0, n}]
CROSSREFS
KEYWORD
sign
AUTHOR
Fernando Miranda, Maria Irene Falcao and Goncalo Carvalho, Jul 23 2024
STATUS
approved