Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 05 2024 17:52:57
%S 1,-1,0,3,-5,-18,113,35,-3044,9755,87999,-882894,-1155935,69780087,
%T -292042360,-5040306157,64613044147,197030202470,-10570955773551,
%U 48865639709115,1470783141900676,-21819085085811861,-123330624543827305,6244177033369108298,-28216305335425392575,-1453926618188019546193
%N Inverse of the Fibonacci sequence beginning 1,1 with respect to binomial convolution.
%C The binomial convolution of this sequence with the Fibonacci sequence beginning 1,1 gives the identity sequence with respect to convolution (A000007).
%H J. A. Adell and A. Lekuona, <a href="https://doi.org/10.1016/j.jmaa.2017.06.077">Binomial convolution and transformations of Appell polynomials</a>, J. Math. Anal. Appl. 456(1), pp. 16-33, 2017.
%H P. Appell, <a href="https://doi.org/10.24033/asens.186">Sur une Classe de Polynômes</a>, Ann. Sci. École Norm. Sup. 9(2), pp. 119-144, 1880.
%F a(0) = 1, a(n) = -Sum_{k=1..n} binomial(n, k)*a(n - k)*A000045(k+1).
%F E.g.f.: 1/G'(x) where G(x) is the e.g.f. of A000045.
%F The recursion P(0, x) = 1, P(n, x) = x^n - Sum_{k=0..n-1} binomial(n, k)*a(n-k)*P(k, x) defines the so-called Appell-Fibonacci polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, where T(n, k) is the triangular array A094436.
%p p:=(1-sqrt(5))/2: q:=(1+sqrt(5))/2:
%p egf := (1-2*q)/(p*exp(p*x)-q*exp(q*x)): ser := series(egf, x, 27):
%p seq(n!*simplify(coeff(ser, x, n)), n=0..25); # _Peter Luschny_, Aug 05 2024
%t a[0] = 1; a[n_]:=a[n]= -Sum[Binomial[n, k] Fibonacci[k + 1] a[n - k], {k, 1, n}]
%t (* or, to generate the list L of the first n terms *)
%t phi = (1 + Sqrt[5])/2; psi = 1 - phi; L[n_] := CoefficientList[Series[(phi - psi)/(phi Exp[phi x] - psi Exp[psi x]), {x, 0, n}], x] Table[k!, {k, 0, n}]
%Y Cf. A000045, A001622, A094436.
%K sign
%O 0,4
%A _Fernando Miranda_, _Maria Irene Falcao_ and Goncalo Carvalho, Jul 23 2024