login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374896
Array read by falling antidiagonals: T(n,k) = denominator(Sum_{x>0} (x^n)/(k^x)); n >= 0 and k >= 2.
1
1, 2, 1, 3, 4, 1, 4, 9, 2, 1, 5, 16, 27, 8, 1, 6, 25, 32, 27, 1, 1, 7, 36, 125, 128, 81, 4, 1, 8, 49, 27, 625, 128, 243, 4, 1, 9, 64, 343, 216, 3125, 512, 243, 16, 1, 10, 81, 256, 2401, 81, 3125, 1024, 729, 1, 1, 11, 100, 729, 2048, 16807, 972, 15625, 4096, 2187, 4, 1
OFFSET
0,2
FORMULA
T(n,k) = denominator(polylog(-n, 1/k)).
T(n,k) = denominator(1/(k-1)^(n+1) * Sum_{m=1..n} A008292(n,m)*k^m).
T(0,k) = k-1.
T(1,k) = (k-1)^2.
T(2,k) = A277542(k-1).
T(n,2) = 1.
T(n,n) = A121985(n).
EXAMPLE
Array begins:
+-----+-----------------------------------------------+
| n\k | 2 3 4 5 6 7 8 ... |
+-----+-----------------------------------------------+
| 0 | 1 2 3 4 5 6 7 ... |
| 1 | 1 4 9 16 25 36 49 ... |
| 2 | 1 2 27 32 125 27 343 ... |
| 3 | 1 8 27 128 625 216 2401 ... |
| 4 | 1 1 81 128 3125 81 16807 ... |
| 5 | 1 4 243 512 3125 972 117649 ... |
| 6 | 1 4 243 1024 15625 486 823543 ... |
| 7 | 1 16 729 4096 78125 11664 823543 ... |
| 8 | 1 1 2187 2048 390625 2187 5764801 ... |
| ... | ... ... ... ... ... ... ... ... |
+-----+-----------------------------------------------+
PROG
(PARI) T(n, k) = denominator(polylog(-n, 1/k));
matrix(7, 7, n, k, T(n-1, k+1)) \\ Michel Marcus, Aug 04 2024
CROSSREFS
Cf. A374895 (numerators).
Sequence in context: A247358 A297224 A180383 * A133807 A325001 A093375
KEYWORD
nonn,tabl,frac
AUTHOR
Mohammed Yaseen, Aug 03 2024
STATUS
approved