OFFSET
1,2
COMMENTS
Also, a(n) = denominator((n+2)/n^3). - Danny Rorabaugh, Sep 30 2017
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = 4*a(n-8) - 6*a(n-16) + 4*a(n-24) - a(n-32) for n > 32.
G.f.: x*(1 + 2*x + 27*x^2 + 32*x^3 + 125*x^4 + 27*x^5 + 343*x^6 + 256*x^7 + 725*x^8 + 242*x^9 + 1223*x^10 + 736*x^11 + 1697*x^12 + 235*x^13 + 2003*x^14 + 1024*x^15 + 2003*x^16 + 470*x^17 + 1697*x^18 + 736*x^19 + 1223*x^20 + 121*x^21 + 725*x^22 + 256*x^23 + 343*x^24 + 54*x^25 + 125*x^26 + 32*x^27 + 27*x^28 + x^29 + x^30) / ((1 - x)^4*(1 + x)^4*(1 + x^2)^4*(1 + x^4)^4).
a(n) = a(n-8)*n^3/(n-8)^3, for n > 8. - Gionata Neri, Feb 25 2017
a(n) = n^3 / 2^min(v2(n+2),3*v2(n)), where v2(n) = A007814(n) is the 2-adic valuation of n. - Danny Rorabaugh, Sep 30 2017
MATHEMATICA
Table[Denominator[(n^2 + 3 n + 2)/n^3], {n, 43}] (* Michael De Vlieger, Feb 25 2017 *)
PROG
(PARI) a(n) = denominator((n^2 + 3*n + 2)/n^3) \\ Colin Barker, Oct 19 2016
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Colin Barker, Oct 19 2016
STATUS
approved