login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277542
a(n) = denominator((n^2 + 3*n + 2)/n^3).
3
1, 2, 27, 32, 125, 27, 343, 256, 729, 250, 1331, 864, 2197, 343, 3375, 2048, 4913, 1458, 6859, 4000, 9261, 1331, 12167, 6912, 15625, 4394, 19683, 10976, 24389, 3375, 29791, 16384, 35937, 9826, 42875, 23328, 50653, 6859, 59319, 32000, 68921, 18522, 79507
OFFSET
1,2
COMMENTS
Also, a(n) = denominator((n+2)/n^3). - Danny Rorabaugh, Sep 30 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = 4*a(n-8) - 6*a(n-16) + 4*a(n-24) - a(n-32) for n > 32.
G.f.: x*(1 + 2*x + 27*x^2 + 32*x^3 + 125*x^4 + 27*x^5 + 343*x^6 + 256*x^7 + 725*x^8 + 242*x^9 + 1223*x^10 + 736*x^11 + 1697*x^12 + 235*x^13 + 2003*x^14 + 1024*x^15 + 2003*x^16 + 470*x^17 + 1697*x^18 + 736*x^19 + 1223*x^20 + 121*x^21 + 725*x^22 + 256*x^23 + 343*x^24 + 54*x^25 + 125*x^26 + 32*x^27 + 27*x^28 + x^29 + x^30) / ((1 - x)^4*(1 + x)^4*(1 + x^2)^4*(1 + x^4)^4).
a(n) = a(n-8)*n^3/(n-8)^3, for n > 8. - Gionata Neri, Feb 25 2017
a(n) = n^3 / 2^min(v2(n+2),3*v2(n)), where v2(n) = A007814(n) is the 2-adic valuation of n. - Danny Rorabaugh, Sep 30 2017
MATHEMATICA
Table[Denominator[(n^2 + 3 n + 2)/n^3], {n, 43}] (* Michael De Vlieger, Feb 25 2017 *)
PROG
(PARI) a(n) = denominator((n^2 + 3*n + 2)/n^3) \\ Colin Barker, Oct 19 2016
CROSSREFS
Cf. A276805.
Sequence in context: A357842 A041883 A226670 * A273844 A294678 A206585
KEYWORD
nonn,frac,easy
AUTHOR
Colin Barker, Oct 19 2016
STATUS
approved