login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374440
Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.
1
1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
OFFSET
0,8
COMMENTS
Member of the family of Lucas-Fibonacci polynomials.
FORMULA
T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k) )/2), floor(k/2))) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.
Columns with odd index agree with the odd indexed columns of A374441.
EXAMPLE
Triangle starts:
[ 0] 1;
[ 1] 1, 0;
[ 2] 1, 1, 1;
[ 3] 1, 2, 1, 0;
[ 4] 1, 3, 1, 1, 1;
[ 5] 1, 4, 1, 3, 2, 0;
[ 6] 1, 5, 1, 6, 3, 1, 1;
[ 7] 1, 6, 1, 10, 4, 4, 3, 0;
[ 8] 1, 7, 1, 15, 5, 10, 6, 1, 1;
[ 9] 1, 8, 1, 21, 6, 20, 10, 5, 4, 0;
[10] 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1;
MAPLE
T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..9);
T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):
CROSSREFS
Cf. A374441.
Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3).
Sequence in context: A156135 A047265 A341418 * A185962 A279928 A297325
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 21 2024
STATUS
approved