login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.
1

%I #12 Jul 22 2024 08:19:03

%S 1,1,0,1,1,1,1,2,1,0,1,3,1,1,1,1,4,1,3,2,0,1,5,1,6,3,1,1,1,6,1,10,4,4,

%T 3,0,1,7,1,15,5,10,6,1,1,1,8,1,21,6,20,10,5,4,0,1,9,1,28,7,35,15,15,

%U 10,1,1,1,10,1,36,8,56,21,35,20,6,5,0

%N Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.

%C Member of the family of Lucas-Fibonacci polynomials.

%F T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k) )/2), floor(k/2))) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.

%F Columns with odd index agree with the odd indexed columns of A374441.

%e Triangle starts:

%e [ 0] 1;

%e [ 1] 1, 0;

%e [ 2] 1, 1, 1;

%e [ 3] 1, 2, 1, 0;

%e [ 4] 1, 3, 1, 1, 1;

%e [ 5] 1, 4, 1, 3, 2, 0;

%e [ 6] 1, 5, 1, 6, 3, 1, 1;

%e [ 7] 1, 6, 1, 10, 4, 4, 3, 0;

%e [ 8] 1, 7, 1, 15, 5, 10, 6, 1, 1;

%e [ 9] 1, 8, 1, 21, 6, 20, 10, 5, 4, 0;

%e [10] 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1;

%p T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0

%p elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:

%p seq(seq(T(n, k), k = 0..n), n = 0..9);

%p T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -

%p binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):

%Y Cf. A374441.

%Y Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3).

%K nonn,tabl

%O 0,8

%A _Peter Luschny_, Jul 21 2024