login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374356
a(n) is the greatest fibbinary number f <= n such that n - f is also a fibbinary number whose binary expansion has no common 1's with that of f (where fibbinary numbers correspond to A003714).
6
0, 1, 2, 2, 4, 5, 4, 5, 8, 9, 10, 10, 8, 9, 10, 10, 16, 17, 18, 18, 20, 21, 20, 21, 16, 17, 18, 18, 20, 21, 20, 21, 32, 33, 34, 34, 36, 37, 36, 37, 40, 41, 42, 42, 40, 41, 42, 42, 32, 33, 34, 34, 36, 37, 36, 37, 40, 41, 42, 42, 40, 41, 42, 42, 64, 65, 66, 66
OFFSET
0,3
COMMENTS
To compute a(n): replace every other bit with zero (starting with the second bit) in each run of consecutive 1's in the binary expansion of n.
FORMULA
a(n) = A374354(n, A277561(n)-1).
a(n) = n - A374355(n).
a(n) <= n with equality iff n is a fibbinary number.
EXAMPLE
The first terms, in decimal and in binary, are:
n a(n) bin(n) bin(a(n))
-- ---- ------ ---------
0 0 0 0
1 1 1 1
2 2 10 10
3 2 11 10
4 4 100 100
5 5 101 101
6 4 110 100
7 5 111 101
8 8 1000 1000
9 9 1001 1001
10 10 1010 1010
11 10 1011 1010
12 8 1100 1000
13 9 1101 1001
14 10 1110 1010
15 10 1111 1010
16 16 10000 10000
PROG
(PARI) a(n) = { my (v = 0, e, x, y, b); while (n, x = y = 0; e = valuation(n, 2); for (k = 0, oo, if (bittest(n, e+k), n -= b = 2^(e+k); [x, y] = [y + b, x], v += x; break; ); ); ); return (v); }
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jul 06 2024
STATUS
approved