login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374353
Least k such that prime(n) mod k = n or 0 if no such k exists.
1
0, 0, 0, 0, 6, 7, 10, 11, 14, 19, 20, 25, 14, 29, 16, 37, 21, 43, 24, 51, 26, 57, 30, 65, 36, 75, 38, 79, 40, 83, 32, 33, 52, 35, 38, 115, 40, 125, 64, 133, 46, 139, 74, 149, 76, 51, 82, 175, 89, 179, 91, 187, 94, 197, 101, 69, 106, 71, 109, 221, 74, 77, 122, 247
OFFSET
1,5
COMMENTS
We observe pairs of consecutive numbers: (6, 7), (10, 11), (19, 20), (32, 33), (93, 94), (118, 119), (242, 243), (302, 303), (215, 216), ...
As k > n we have prime(n) = m*k + n. As prime(n) > n for all n we have m >= 1 and so prime(n) >= k + n > n + n = 2*n. But prime(n) < 2*n for n <= 4 so a(n) = 0 for n <= 4. - David A. Corneth, Jul 08 2024
LINKS
EXAMPLE
a(5) = 6 because prime(5) mod 6 = 11 mod 6 = 5, and there is no k < 6 such that prime(5) mod k = 5.
MAPLE
nn:=10^7:
for n from 1 to 100 do:
ii:=0:
for k from 1 to nn while(ii=0)
do:
if irem(ithprime(n), k)=n
then ii:=1:printf(`%d, `, k):
else fi:
od:
if ii=0
then printf(`%d, `, 0):
else fi:
od:
MATHEMATICA
Table[k=1; While[Mod[Prime[n], k] !=n, k++]; k, {n, 5, 70}]
PROG
(PARI) a(n) = if (n<5, 0, my(k=1); while((prime(n) % k) != n, k++); k); \\ Michel Marcus, Jul 06 2024
(PARI) first(n) = {
n = max(n, 4);
my(res = vector(n), t = 4);
forprime(p = 11, oo,
t++;
if(t > n,
return(res);
);
d = divisors(p - t);
for(i = 1, #d,
if(d[i] > t,
res[t] = d[i];
break
);
);
);
} \\ David A. Corneth, Jul 07 2024
CROSSREFS
Sequence in context: A374528 A372587 A118957 * A037303 A135121 A309854
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 06 2024
STATUS
approved