%I #28 Jul 11 2024 02:08:49
%S 0,0,0,0,6,7,10,11,14,19,20,25,14,29,16,37,21,43,24,51,26,57,30,65,36,
%T 75,38,79,40,83,32,33,52,35,38,115,40,125,64,133,46,139,74,149,76,51,
%U 82,175,89,179,91,187,94,197,101,69,106,71,109,221,74,77,122,247
%N Least k such that prime(n) mod k = n or 0 if no such k exists.
%C We observe pairs of consecutive numbers: (6, 7), (10, 11), (19, 20), (32, 33), (93, 94), (118, 119), (242, 243), (302, 303), (215, 216), ...
%C As k > n we have prime(n) = m*k + n. As prime(n) > n for all n we have m >= 1 and so prime(n) >= k + n > n + n = 2*n. But prime(n) < 2*n for n <= 4 so a(n) = 0 for n <= 4. - _David A. Corneth_, Jul 08 2024
%e a(5) = 6 because prime(5) mod 6 = 11 mod 6 = 5, and there is no k < 6 such that prime(5) mod k = 5.
%p nn:=10^7:
%p for n from 1 to 100 do:
%p ii:=0:
%p for k from 1 to nn while(ii=0)
%p do:
%p if irem(ithprime(n),k)=n
%p then ii:=1:printf(`%d, `,k):
%p else fi:
%p od:
%p if ii=0
%p then printf(`%d, `,0):
%p else fi:
%p od:
%t Table[k=1;While[Mod[Prime[n],k] !=n,k++];k,{n,5,70}]
%o (PARI) a(n) = if (n<5, 0, my(k=1); while((prime(n) % k) != n, k++); k); \\ _Michel Marcus_, Jul 06 2024
%o (PARI) first(n) = {
%o n = max(n, 4);
%o my(res = vector(n), t = 4);
%o forprime(p = 11, oo,
%o t++;
%o if(t > n,
%o return(res);
%o );
%o d = divisors(p - t);
%o for(i = 1, #d,
%o if(d[i] > t,
%o res[t] = d[i];
%o break
%o );
%o );
%o );
%o } \\ _David A. Corneth_, Jul 07 2024
%Y Cf. A000040, A014689.
%K nonn
%O 1,5
%A _Michel Lagneau_, Jul 06 2024