login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374107
a(n) = 1 if A113177(n) and A328845(n) are both even, otherwise 0, where A113177 is fully additive with a(p) = Fibonacci(p) and A328845 is the first Fibonacci-based variant of the arithmetic derivative.
3
1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A373585(n) * A374045(n).
a(n) = A059841(A374106(n)).
PROG
(PARI)
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])/f[i, 1]));
A374107(n) = (!(A113177(n)%2) && !(A328845(n)%2));
CROSSREFS
Characteristic function of A374108.
Sequence in context: A214295 A145377 A374113 * A373585 A246260 A275973
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2024
STATUS
approved