login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373485
a(n) = gcd(A083345(n), A276085(n)), where A276085 is fully additive with a(p) = p#/p, and A083345 is the numerator of the fully additive function with a(p) = 1/p.
7
0, 1, 1, 1, 1, 1, 1, 3, 2, 7, 1, 4, 1, 1, 8, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 5, 2, 1, 12, 1, 1, 1, 8, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 4, 2, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 17, 3, 6, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 8, 1, 1, 1, 20, 4, 2, 1, 12, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
For all n >= 1, A373145(n) is a multiple of a(n).
For all i, j: A373151(i) = A373151(j) => a(i) = a(j) => A373483(i) = A373483(j).
LINKS
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A373485(n) = gcd(A083345(n), A276085(n));
CROSSREFS
Cf. A369002 (positions of even terms), A369003 (of odd terms), A373483, A373484 (of multiples of 3).
Sequence in context: A318436 A369042 A243375 * A369045 A163659 A348337
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 09 2024
STATUS
approved