login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(A083345(n), A276085(n)), where A276085 is fully additive with a(p) = p#/p, and A083345 is the numerator of the fully additive function with a(p) = 1/p.
7

%I #10 Jun 09 2024 13:21:17

%S 0,1,1,1,1,1,1,3,2,7,1,4,1,1,8,2,1,1,1,2,2,1,1,1,2,1,1,8,1,1,1,5,2,1,

%T 12,1,1,1,8,1,1,1,1,4,1,1,1,1,2,1,4,2,1,1,8,1,2,1,1,1,1,1,17,3,6,1,1,

%U 2,2,1,1,1,1,1,1,4,6,1,1,1,4,1,1,1,2,1,8,1,1,1,20,4,2,1,12,1,1,1,1,7,1,1,1,1,1

%N a(n) = gcd(A083345(n), A276085(n)), where A276085 is fully additive with a(p) = p#/p, and A083345 is the numerator of the fully additive function with a(p) = 1/p.

%C For all n >= 1, A373145(n) is a multiple of a(n).

%C For all i, j: A373151(i) = A373151(j) => a(i) = a(j) => A373483(i) = A373483(j).

%H Antti Karttunen, <a href="/A373485/b373485.txt">Table of n, a(n) for n = 1..100000</a>

%o (PARI)

%o A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };

%o A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1,primepi(f[k, 1]-1),prime(i))); };

%o A373485(n) = gcd(A083345(n), A276085(n));

%Y Cf. A083345, A276085, A373145, A373151.

%Y Cf. A369002 (positions of even terms), A369003 (of odd terms), A373483, A373484 (of multiples of 3).

%K nonn

%O 1,8

%A _Antti Karttunen_, Jun 09 2024