login
A373477
a(n) = 1 if A001414(n) and A003415(n) are both multiples of 3, otherwise 0, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
2
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
1
EXAMPLE
a(n) = [A373364(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
a(n) >= A373474(n).
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373477(n) = (!(A001414(n)%3) && !(A003415(n)%3));
CROSSREFS
Characteristic function of A373478.
Cf. also A373474.
Sequence in context: A373975 A374110 A297199 * A185117 A014045 A015269
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 07 2024
STATUS
approved