login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373131
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( ( n/gcd(x_1, x_2, x_3, n) )^2 ).
3
1, 50, 339, 1786, 3845, 16950, 19495, 58682, 85281, 192250, 176891, 605454, 401869, 974750, 1303455, 1890106, 1507985, 4264050, 2612899, 6867170, 6608805, 8844550, 6727799, 19893198, 12109345, 20093450, 20802003, 34818070, 21241949, 65172750, 29581471, 60581690
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( ( gcd(x_1, n)/gcd(x_1, x_2, x_3, n) )^3 ).
a(n) = Sum_{d|n} J_3(d) * sigma(d^2), where the Jordan totient function J_3(n) = A059376(n).
From Amiram Eldar, May 26 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+3)*(p^2+p+1) - p^(3*e)*(p^4+p^3+p^2+p+1) + p^2 + p)/(p^5-1).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 1/p^4) = 1.67666099579383196077... . (End)
MATHEMATICA
f[p_, e_] := (p^(5*e+3)*(p^2+p+1) - p^(3*e)*(p^4+p^3+p^2+p+1) + p^2 + p)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2024 *)
PROG
(PARI) J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
a(n, k=3, m=2) = sumdiv(n, d, J(d, k)*sigma(d^m));
CROSSREFS
Cf. A013664.
Sequence in context: A261803 A184564 A184556 * A334697 A280548 A293608
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 26 2024
STATUS
approved