login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372726
Legendre's triangle read by rows. T(n, k) = L(n / prime(k)) where L(n/p) is the Legendre symbol, for n >= 0 and 2 <= k <= n + 2.
7
0, 1, 1, -1, -1, 1, 0, -1, -1, 1, 1, 1, 1, 1, 1, -1, 0, -1, 1, -1, -1, 0, 1, -1, -1, -1, -1, 1, 1, -1, 0, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 0, -1, -1, 1, -1, -1, -1, 1, -1
OFFSET
0
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
Adrien Marie Legendre, Essai sur la théorie des nombres, Paris, Duprat, an VI [1798]. Introducing the symbol, p. 186.
FORMULA
T(n, k) = r - p*[r > 1] where r = n^v mod p, p = prime(k), v = (p - 1)/2, and [.] are the Iverson brackets.
EXAMPLE
Triangle starts:
[ 0] 0;
[ 1] 1, 1;
[ 2] -1, -1, 1;
[ 3] 0, -1, -1, 1;
[ 4] 1, 1, 1, 1, 1;
[ 5] -1, 0, -1, 1, -1, -1;
[ 6] 0, 1, -1, -1, -1, -1, 1;
[ 7] 1, -1, 0, -1, -1, -1, 1, -1;
[ 8] -1, -1, 1, -1, -1, 1, -1, 1, -1;
[ 9] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
[10] 1, 0, -1, -1, 1, -1, -1, -1, -1, 1, 1;
.
Not limiting the range of k leads to the square array:
.
[n\p] 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
-----------------------------------------------
[0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[2] -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, ...
[3] 0, -1, -1, 1, 1, -1, -1, 1, -1, -1, ...
[4] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[5] -1, 0, -1, 1, -1, -1, 1, -1, 1, 1, ...
[6] 0, 1, -1, -1, -1, -1, 1, 1, 1, -1, ...
[7] 1, -1, 0, -1, -1, -1, 1, -1, 1, 1, ...
[8] -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, ...
[9] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
...
MAPLE
L := (n, k) -> NumberTheory:-LegendreSymbol(n, ithprime(k)):
for n from 0 to 10 do lprint([n], seq(L(n, k), k = 2..n + 2)) od;
MATHEMATICA
Array[JacobiSymbol[#, Prime[Range[2, #+2]]]&, 15, 0] (* Paolo Xausa, Jul 09 2024 *)
PROG
(Python)
from sympy import primerange, prime, legendre_symbol
for n in range(11):
print([n], [legendre_symbol(n, p) for p in primerange(3, prime(n + 2) + 1)])
# For illustration of the formula (Sympy's implementation is more efficent):
def LegendreSymbol(n, p):
v = (p - 1) // 2
res = pow(n, v, p)
return res - p if res > 1 else res
CROSSREFS
Family: A217831 (Euclid's triangle), A372877 (Jacobi's triangle), A372728 (Kronecker's triangle), A373223 (Gauss' triangle), A373751 (quadratic residue modulo prime(n)), A373748 (quadratic residue/nonresidue modulo n).
Cf. A372725 (row sums).
Sequence in context: A182067 A196147 A097325 * A242647 A167393 A275606
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, May 22 2024
EXTENSIONS
Data corrected by Paolo Xausa, Jul 09 2024
STATUS
approved