login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372723
Triangle read by rows: Column k has e.g.f. t^k / ((1 - t)^(k + 1) * exp(t)).
1
1, 0, 1, 1, 2, 2, 2, 9, 12, 6, 9, 44, 84, 72, 24, 44, 265, 640, 780, 480, 120, 265, 1854, 5430, 8520, 7560, 3600, 720, 1854, 14833, 50988, 97650, 112560, 78120, 30240, 5040, 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320
OFFSET
0,5
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 1, 2, 2;
[3] 2, 9, 12, 6;
[4] 9, 44, 84, 72, 24;
[5] 44, 265, 640, 780, 480, 120;
[6] 265, 1854, 5430, 8520, 7560, 3600, 720;
[7] 1854, 14833, 50988, 97650, 112560, 78120, 30240, 5040;
[8] 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320;
MAPLE
MAX := 14; gf := k -> t^k / ((1 - t)^(k + 1) * exp(t)):
ser := k -> series(gf(k), t, MAX):
col := k -> local n; seq(n!*coeff(series(ser(k), t, MAX-1), t, n), n = 0..MAX-2):
T := (n, k) -> col(k)[n+1]:
seq(lprint(seq(T(n, k), k = 0..n)), n = 0..8);
CROSSREFS
Cf. A000166 (column 0), A000142 (main diagonal), A062119 (subdiagonal), A000354 (row sums), A033999 (alternating row sums), A372716 (central terms).
Sequence in context: A155695 A195706 A091185 * A324956 A268081 A319885
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 21 2024
STATUS
approved