login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: Column k has e.g.f. t^k / ((1 - t)^(k + 1) * exp(t)).
1

%I #7 May 21 2024 10:20:05

%S 1,0,1,1,2,2,2,9,12,6,9,44,84,72,24,44,265,640,780,480,120,265,1854,

%T 5430,8520,7560,3600,720,1854,14833,50988,97650,112560,78120,30240,

%U 5040,14833,133496,526568,1189104,1681680,1525440,866880,282240,40320

%N Triangle read by rows: Column k has e.g.f. t^k / ((1 - t)^(k + 1) * exp(t)).

%e Triangle starts:

%e [0] 1;

%e [1] 0, 1;

%e [2] 1, 2, 2;

%e [3] 2, 9, 12, 6;

%e [4] 9, 44, 84, 72, 24;

%e [5] 44, 265, 640, 780, 480, 120;

%e [6] 265, 1854, 5430, 8520, 7560, 3600, 720;

%e [7] 1854, 14833, 50988, 97650, 112560, 78120, 30240, 5040;

%e [8] 14833, 133496, 526568, 1189104, 1681680, 1525440, 866880, 282240, 40320;

%p MAX := 14; gf := k -> t^k / ((1 - t)^(k + 1) * exp(t)):

%p ser := k -> series(gf(k), t, MAX):

%p col := k -> local n; seq(n!*coeff(series(ser(k), t, MAX-1), t, n), n = 0..MAX-2):

%p T := (n, k) -> col(k)[n+1]:

%p seq(lprint(seq(T(n, k), k = 0..n)), n = 0..8);

%Y Cf. A000166 (column 0), A000142 (main diagonal), A062119 (subdiagonal), A000354 (row sums), A033999 (alternating row sums), A372716 (central terms).

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, May 21 2024