login
A275606
Spiral constructed on the nodes of the triangular net such that a(n) = signum(A274920(n)).
7
0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0
OFFSET
0
COMMENTS
The structure of the spiral has the following properties:
1) The 1's represent the nodes of the hexagonal net.
2) Every 0 is surrounded by six equidistant 1's.
3) Every 1 is surrounded by three equidistant 0's and three equidistant 1's.
4) Diagonals are periodic sequences with period 3 (A011655).
Also the 1's represent the atoms of carbon in graphene.
FORMULA
a(n) = A057427(A274920(n)).
EXAMPLE
Illustration of initial terms as a spiral:
.
. 1 - 0 - 1 - 1 - 0 - 1
. / \
. 0 1 - 1 - 0 - 1 - 1 0
. / / \ \
. 1 1 0 - 1 - 1 - 0 1 1
. / / / \ \ \
. 1 0 1 1 - 0 - 1 1 0 1
. / / / / \ \ \ \
. 0 1 1 0 1 - 1 0 1 1 0
. / / / / / \ \ \ \ \
. 1 1 0 1 1 0 - 1 1 0 1 1
. \ \ \ \ \ / / / /
. 0 1 1 0 1 - 1 - 0 1 1 0
. \ \ \ \ / / /
. 1 0 1 1 - 0 - 1 - 1 0 1
. \ \ \ / /
. 1 1 0 - 1 - 1 - 0 - 1 1
. \ \ /
. 0 1 - 1 - 0 - 1 - 1 - 0
. \
. 1 - 0 - 1 - 1 - 0 - 1
.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 09 2016
STATUS
approved