login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372497
Positive integers of the form k^2 - 1 that are the product of two other positive integers of the form k^2 - 1.
1
24, 120, 360, 840, 960, 1680, 3024, 4224, 5040, 7920, 11880, 17160, 22800, 24024, 32760, 36480, 43680, 57120, 70224, 73440, 83520, 93024, 116280, 121800, 143640, 175560, 201600, 212520, 241080, 255024, 303600, 330624, 358800, 421200, 491400, 570024, 591360
OFFSET
1,1
COMMENTS
This sequence is the sequence of possible c^2 - 1 values of all triples (a,b,c) of integers > 1 such that (a^2 - 1)*(b^2 - 1) = c^2 - 1.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..19120 (first 408 terms from Ely Golden, terms <= 10^17)
David A. Corneth, PARI program
EXAMPLE
120 is a term since 120 = 15*8 = (4^2 - 1)*(3^2 - 1) and 120 = 11^2 - 1.
PROG
(Python)
from math import isqrt
def is_perfect_square(n): return isqrt(abs(n))**2 == n
limit = 10**17
sequence_entries = set()
for a in range(2, isqrt(isqrt(limit))+1):
u = a**2 - 1
for b in range(a+1, isqrt(limit//u+1)+1):
v = b**2 - 1
if(is_perfect_square(u*v + 1)): sequence_entries.add(u*v)
sequence_entries = sorted(sequence_entries)
for i, j in enumerate(sequence_entries, 1):
print(i, j)
(PARI) isok1(k) = issquare(k+1);
isok2(k) = fordiv(k, d, if (isok1(d) && isok1(k/d), return(1)));
isok(k) = isok1(k) && isok2(k); \\ Michel Marcus, May 04 2024
CROSSREFS
Intersection of A005563 and A063066.
Sequence in context: A069074 A360389 A059775 * A052762 A217056 A099317
KEYWORD
nonn
AUTHOR
Ely Golden, May 03 2024
STATUS
approved