login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372279
E.g.f. A(x) satisfies A(x) = exp( x * ( exp(x) * A(x) )^(5/2) ).
1
1, 1, 11, 181, 4461, 148101, 6202651, 314158461, 18682884681, 1276509416761, 98552772971451, 8485633118339301, 806247602665104661, 83796784405535693181, 9457590223483413296811, 1151924494605809502276301, 150602291336042725831941201
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( -2/5 * LambertW(-5*x/2 * exp(5*x/2)) ).
E.g.f.: A(x) = ( -LambertW(-5*x/2 * exp(5*x/2)) / (5*x/2 * exp(5*x/2)) )^(2/5).
E.g.f.: A(x) = ( Sum_{k>=0} (k+1)^(k-1) * (5*x/2 * exp(5*x/2))^k / k! )^(2/5).
a(n) = Sum_{k=0..n} (5*k/2)^(n-k) * (5*k/2+1)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 5^(n-1) * n^(n-1) / (exp(n - 2/5) * 2^(n-1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, May 06 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2/5*lambertw(-5/2*x*exp(5*x/2)))))
(PARI) a(n) = sum(k=0, n, (5*k/2)^(n-k)*(5*k/2+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 25 2024
STATUS
approved