login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372114
Sum of squares of divisors of the numbers m such that m and m+2 have the same sum of squares of divisors.
1
850, 48100, 110500, 1171300, 897826072900, 1855703820100, 4974132151300, 223203708201604, 388880538297700, 1056863959716100, 2077699792101700, 2101425630304900, 2444010061663300, 6152287246125700, 6862948725741700, 10203957350659300, 27831593408440900, 50905357902220900
OFFSET
1,1
COMMENTS
All the terms are even.
The are only 2 equal consecutive terms in A001157: sigma_2(6) = sigma_2(7) = 50.
LINKS
Jean-Marie De Koninck, On the solutions of sigma_2(n) = sigma_2(n + l), Ann. Univ. Sci. Budapest Sect. Comput. 21 (2002), 127-133.
FORMULA
a(n) = A001157(A169635(n)).
MATHEMATICA
seq[mmax_] := Module[{s1 = DivisorSigma[2, 1], s2 = DivisorSigma[2, 2], s3, s4, s={}}, Do[s3 = DivisorSigma[2, m]; s4 = DivisorSigma[2, m+1]; If[s1 == s3, AppendTo[s, s1]]; If[s2 == s4, AppendTo[s, s2]]; s1 = s3; s2 = s4, {m, 3, mmax, 2}]; s]; seq[10^6]
PROG
(PARI) lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(s1, ", ")); if(s2 == s4, print1(s2, ", ")); s1 = s3; s2 = s4); }
CROSSREFS
Similar sequences: A053215, A053249.
Sequence in context: A194618 A252546 A251257 * A252276 A237762 A237763
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 19 2024
STATUS
approved