login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372115
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1 + 4*x)^(1/2) * A(x) ).
0
1, 1, 4, 11, 48, 174, 784, 3219, 14816, 65082, 304656, 1393854, 6617184, 31086556, 149336672, 714494467, 3466785216, 16808037474, 82244904016, 402770823114, 1984987570016, 9797722907684, 48581811550112, 241324198117678, 1202874359046464, 6006605345531268
OFFSET
0,3
FORMULA
G.f.: A(x) = 2/(1 + sqrt(1-4*x*sqrt(1+4*x))).
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(2*k,k) * binomial(k/2,n-k)/(k+1).
D-finite with recurrence n*(n-1)*(n+1)*a(n) +2*n*(n-1)*(10*n-23)*a(n-1) +12*(n-1)*(11*n^2-64*n+83)*a(n-2) +24*(4*n^3-90*n^2+352*n-369)*a(n-3) +48*(-64*n^3+528*n^2-1433*n+1290)*a(n-4) +64*(-268*n^3+3090*n^2-11882*n+15255)*a(n-5) +192*(-208*n^3+2928*n^2-13705*n+21345)*a(n-6) -1152*(4*n-25)*(4*n-19)*(2*n-11)*a(n-7)=0. - R. J. Mathar, Apr 24 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*sqrt(1+4*x))))
(PARI) a(n) = sum(k=0, n, 4^(n-k)*binomial(2*k, k)*binomial(k/2, n-k)/(k+1));
CROSSREFS
Cf. A372139.
Sequence in context: A149307 A149308 A149309 * A149310 A149311 A212086
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 20 2024
STATUS
approved