login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372002
G.f. A(x) satisfies A(x) = ( 1 + 4*x*(1 + x*A(x)) )^(1/2).
4
1, 2, 0, 4, -8, 24, -72, 224, -720, 2368, -7936, 27008, -93088, 324288, -1140032, 4039296, -14409728, 51713792, -186577152, 676334592, -2462090752, 8997154816, -32992079872, 121362092032, -447721572864, 1656081763328, -6140640246784, 22820403312640
OFFSET
0,2
FORMULA
G.f.: A(x) = (1+4*x)/(-2*x^2 + sqrt(1+4*x+4*x^4)).
a(n) = Sum_{k=0..n} 4^k * binomial(n/2-k/2+1/2,k) * binomial(k,n-k)/(n-k+1).
D-finite with recurrence n*a(n) +2*(2*n-3)*a(n-1) +4*(n-6)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
MAPLE
A372002 := proc(n)
add(4^k*binomial((n-k+1)/2, k)*binomial(k, n-k)/(n-k+1), k=0..n) ;
end proc:
seq(A372002(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec((1+4*x)/(-2*x^2+sqrt(1+4*x+4*x^4)))
(PARI) a(n) = sum(k=0, n, 4^k*binomial(n/2-k/2+1/2, k)*binomial(k, n-k)/(n-k+1));
CROSSREFS
Cf. A372003.
Sequence in context: A115780 A101189 A295321 * A366363 A001443 A195287
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 15 2024
STATUS
approved