Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 22 2024 12:37:41
%S 1,2,0,4,-8,24,-72,224,-720,2368,-7936,27008,-93088,324288,-1140032,
%T 4039296,-14409728,51713792,-186577152,676334592,-2462090752,
%U 8997154816,-32992079872,121362092032,-447721572864,1656081763328,-6140640246784,22820403312640
%N G.f. A(x) satisfies A(x) = ( 1 + 4*x*(1 + x*A(x)) )^(1/2).
%F G.f.: A(x) = (1+4*x)/(-2*x^2 + sqrt(1+4*x+4*x^4)).
%F a(n) = Sum_{k=0..n} 4^k * binomial(n/2-k/2+1/2,k) * binomial(k,n-k)/(n-k+1).
%F D-finite with recurrence n*a(n) +2*(2*n-3)*a(n-1) +4*(n-6)*a(n-4)=0. - _R. J. Mathar_, Apr 22 2024
%p A372002 := proc(n)
%p add(4^k*binomial((n-k+1)/2,k)*binomial(k,n-k)/(n-k+1),k=0..n) ;
%p end proc:
%p seq(A372002(n),n=0..60) ; # _R. J. Mathar_, Apr 22 2024
%o (PARI) my(N=30, x='x+O('x^N)); Vec((1+4*x)/(-2*x^2+sqrt(1+4*x+4*x^4)))
%o (PARI) a(n) = sum(k=0, n, 4^k*binomial(n/2-k/2+1/2, k)*binomial(k, n-k)/(n-k+1));
%Y Cf. A372003.
%K sign
%O 0,2
%A _Seiichi Manyama_, Apr 15 2024