login
A371981
Number of primes between two successive Sophie Germain primes, with Sophie Germain primes not themselves included in the count.
0
0, 0, 1, 3, 0, 2, 2, 6, 0, 5, 1, 7, 0, 1, 7, 0, 1, 5, 1, 9, 8, 1, 2, 7, 2, 10, 7, 2, 0, 3, 3, 3, 2, 4, 15, 5, 7, 0, 1, 2, 8, 14, 0, 7, 13, 4, 1, 3, 4, 0, 5, 3, 1, 17, 9, 9, 0, 2, 3, 5, 4, 1, 0, 7, 2, 14, 7, 2, 6, 0, 6, 7, 0, 18, 0, 6, 1, 7, 9, 3, 2, 0, 5, 28, 5, 3, 3, 2, 1, 5, 6, 7, 3, 15, 2
OFFSET
1,4
COMMENTS
Number of primes between A005384(n) and A005384(n+1).
FORMULA
a(n) = A000720(A005384(n+1)) - A000720(A005384(n)) - 1. - Michael De Vlieger, Apr 19 2024
EXAMPLE
a(4) = 3 because there are 3 primes between 11 and 23: 13, 17 and 19.
MATHEMATICA
-1 + Subtract @@ Map[PrimePi, {Last[#], First[#]}] & /@ Partition[Select[Prime[Range[500]], PrimeQ[2 # + 1] &], 2, 1] (* Michael De Vlieger, Apr 19 2024 *)
PROG
(Python)
from sympy import isprime
l = []
s = 0
for i in range(3, 3800):
if isprime(i):
if isprime(2*i + 1):
l.append(s)
s = 0
else:
s += 1
print(l)
(PARI) lista(nn) = my(vp = select(p->isprime(2*p+1), primes(nn)), wp = apply(primepi, vp)); vector(#wp-1, k, wp[k+1]-wp[k]-1); \\ Michel Marcus, May 21 2024
CROSSREFS
Sequence in context: A300722 A087625 A300720 * A280238 A154574 A119493
KEYWORD
nonn
AUTHOR
Alexandre Herrera, Apr 15 2024
STATUS
approved