login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371978
Number of ways of placing n non-attacking wazirs on a 3 X n board.
3
1, 3, 8, 22, 61, 174, 504, 1478, 4374, 13035, 39062, 117585, 355279, 1076845, 3272692, 9969385, 30430982, 93055869, 285013326, 874193006, 2684778104, 8254967674, 25408703236, 78283452265, 241403160254, 745024894092, 2301051484006, 7111897305089, 21995136183906
OFFSET
0,2
LINKS
Wikipedia, Wazir (chess)
FORMULA
a(n) = A371967(n,n).
From Vaclav Kotesovec, Apr 16 2024: (Start)
Recurrence: (n+1)*(72*n^4 - 700*n^3 + 2288*n^2 - 2803*n + 796)*a(n) = 2*(144*n^5 - 1328*n^4 + 3814*n^3 - 3083*n^2 - 1479*n + 1194)*a(n-1) - 2*(72*n^5 - 700*n^4 + 2050*n^3 - 1979*n^2 + 409*n + 16)*a(n-2) - 4*(36*n^5 - 368*n^4 + 1437*n^3 - 2421*n^2 + 1398*n + 95)*a(n-3) - (72*n^5 - 772*n^4 + 2404*n^3 - 1365*n^2 - 4749*n + 5704)*a(n-4) + 2*(72*n^5 - 808*n^4 + 2858*n^3 - 3067*n^2 - 1494*n + 2666)*a(n-5) - (n-6)*(72*n^4 - 412*n^3 + 620*n^2 - 39*n - 347)*a(n-6).
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = (188 + 12*sqrt(93))^(1/3)/6 + 14/(3*(188 + 12*sqrt(93))^(1/3)) + 4/3 and c = 11/6 + (1465336244224 - 5597165568*sqrt(93))^(1/3)/5952 + ((23080523 + 88161*sqrt(93))/2)^(1/3) / (12*31^(2/3)). (End)
EXAMPLE
a(2) = 8:
+-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+
| W . | | W . | | W . | | . W | | . W | | . W | | . . | | . . |
| . W | | . . | | . . | | W . | | . . | | . . | | W . | | . W |
| . . | | W . | | . W | | . . | | W . | | . W | | . W | | W . |
+-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ .
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1,
add(`if`(Bits[And](j, l)>0, 0, expand(b(n-1, j)*
x^add(i, i=Bits[Split](j)))), j=[0, 1, 2, 4, 5]))
end:
a:= n-> coeff(b(n, 0), x, n):
seq(a(n), n=0..30);
CROSSREFS
Main diagonal of A371967.
Sequence in context: A121449 A025566 A027036 * A018040 A018041 A073357
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 14 2024
STATUS
approved