login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371888
G.f. A(x) satisfies A(x) = 1 - x/A(x) * (1 - A(x) - A(x)^2).
1
1, 1, 2, 3, 3, 1, -2, -1, 10, 25, 12, -65, -151, -7, 588, 1083, -437, -5247, -7732, 7943, 47503, 53793, -105312, -430117, -343042, 1249801, 3866558, 1730019, -13996095, -34243895, -1947202, 150962375, 296101866, -121857183, -1582561868, -2468098041, 2529520767
OFFSET
0,3
FORMULA
a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-2*k,n-k-1) for n > 0.
a(n) = (1/2) * Sum_{k=0..n} 4^k * binomial(k/2+1/2,k) * binomial(n-1,n-k)/(k+1) for n > 0.
G.f.: A(x) = 2*x/(1+x - sqrt(1-2*x+5*x^2)).
D-finite with recurrence n*a(n) +3*(-n+1)*a(n-1) +(7*n-18)*a(n-2) +5*(-n+3)*a(n-3)=0. - R. J. Mathar, Apr 22 2024
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-2*k, n-k-1))/n);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 11 2024
STATUS
approved